The effects of applied magnetic fields on the α/γ phase boundary in the Fe–Si system

نویسندگان

  • M C Gao
  • D E Laughlin
چکیده

The CALPHAD (calculations of phase diagrams) method is used to examine the effects of applied magnetic fields on the α/γ phase boundary in the Fe–Si system in the paramagnetic state. The reported susceptibility data for pure Fe is first re-evaluated. The contributions to the total Gibbs energy of the ferrite (α) and austenite (γ ) from the external fields are calculated based on the Curie–Weiss law and the re-evaluated susceptibility data. The Fe–Si phase diagram on the Fe-rich side as a function of applied field is calculated using the Thermo-CalcTM package. With increasing field strength, the γ loop shrinks monotonically; that is, the α/γ -Fe transition temperature increases while that for γ /δ-Fe transition decreases, albeit more slowly. Finally, in conformance with the existing CALPHAD databank, Redlich–Kister polynomials are proposed to account for the compositional and temperature dependence of the contribution to the total Gibbs energy from the applied field in the paramagnetic state in the range over which the Curie–Weiss law is obeyed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and Characterization of γ-Fe2O3@HAp@β-CD Core-Shell Nanoparticles as a Novel Magnetic Nanoreactor and Its Application in the One-Pot Preparation of β-azido Alcohols, β-nitro Alcohols, and β-cyanohydrins

In this study, β-cyclodextrin(β-CD) supported, hydroxyapatite encapsulated γ-Fe2O3 (γ-Fe2O3@HAp@β-CD) was successfully prepared and evaluated as a solid-liquid phase transfer catalyst and also a molecular host system and nanoreactor for the nucleophilic ring-opening of epoxides in water for the preparation of β-azido alcohols, β-nitro alcohols, an...

متن کامل

Nonlocal Vibration of Embedded Coupled CNTs Conveying Fluid Under Thermo-Magnetic Fields Via Ritz Method

In this work, nonlocal vibration of double of carbon nanotubes (CNTs) system conveying fluid coupled by visco-Pasternak medium is carried out based on nonlocal elasticity theory where CNTs are placed in uniform temperature change and magnetic field. Considering Euler-Bernoulli beam (EBB) model and Knudsen number, the governing equations of motion are discretized and Ritz method is applied to ob...

متن کامل

Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate

The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...

متن کامل

Nonlinear Flow-Induced Flutter Instability of Double CNTs Using Reddy Beam Theory

In this study, nonlocal nonlinear instability and the vibration of a double carbon nanotube (CNT) system have been investigated. The Visco-Pasternak model is used to simulate the elastic medium between nanotubes, on which the effect of the spring, shear and damping of the elastic medium is considered. Both of the CNTs convey a viscose fluid and a uniform longitudinal magnetic field is applied t...

متن کامل

Comparison of the effect of Si and Ge presence on phase formation process, the structural and magnetic properties of Co2FeX (X=Ge,Si) Heusler compounds

In this study, the Co2FeX (X=Ge, Si) Heusler compounds with 30 valence electrons, which are made by using mechanical alloying and arc melting methods were studied. The crystallization of samples was confirmed by XRD data in both manufacturing methods. The results showed that the presence of Si than Ge in the compound played a more effective role to creation a large scale atomic ordering, and th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006